[bookmark: _GoBack]
P6.1	The interface for the Complex class is provided below (Note that the first letter of Complex is capitalized in order to distinguish it from the complex class defined in <complex> header file). A complex number c is defined as c = a + bi where c is the complex number consisting of two part: real part denoted by ‘a’ and an imaginary part denoted by ‘b’ multiplied by i and i = . (The website at https://en.wikipedia.org/wiki/Complex_number provides an introductory level discussion of complex numbers.) Operations such as addition, subtraction, multiplication, and division can be performed on complex number in a way similar to the operations performed on rational numbers since computations only involve a and b, which are real numbers. For you convenience, the basic four operations or computations are provided below. Note that all four computations involve only real numbers (double type in C++), this program is very similar to the rational number problem.

Addition: 		[image: (a+bi) + (c+di) = (a+c) + (b+d)i.\]	

Subtraction: 		[image: (a+bi) - (c+di) = (a-c) + (b-d)i.\]

Multiplication:		[image: (a+bi) (c+di) = (ac-bd) + (bc+ad)i.\]

Division: 		[image: \,\frac{a + bi}{c + di} = \left({ac + bd \over c^2 + d^2}\right) + \left({bc - ad \over c^2 + d^2} \right)i.]

where i = ; it does not even enter into your program code.

class Complex
{
	friend ostream& operator<<(ostream &out, const Complex &cobj);
	// Postcondition: contents of cobj is display in (a, b) format, e.g., 3 - 4i ==> (3, -4)

	friend istream& operator>>(istream &out, Complex &cobj);
	// prompt message "Enter real and imaginary values: " is displayed in main() by the client of the class
	// Postconodition: two values entered by the users are assinged to real and imag of cobj, respectively
public:
	Complex();
	// default constructor

	Complex(double r, double i);
	// Postcondition: a complex object is declared and initialized to (r, i) or (0, 0) if no values are passed to the constructor

	void setComplexNumber(double a, double b);
	// a mutator function
	// Postcondition: set the real and imaginary parts of the calling complex object to a and b, respectively

	Complex operator+(const Complex &c2) const;
	// Postcondition: sum of (*this) - c2 is returned

	Complex operator-(const Complex &c2) const;
	// Postcondition: difference of (*this) - c2 is returned

	Complex operator*(const Complex &c2) const;
	// Postcondition: product of (*this) * c2 is returned

	Complex operator/(const Complex &c2) const;
	// Postcondition: quotient of (*this) / c2 is returned

	bool operator==(const Complex &c2) const;
	// Postcondition: returns true if (*this == c2) is true; returns false otherwise

private:
	double real;	// real part of a complex number (a, b)
	double imag;	// imaginary part of a complex number (a, b)
};
1. You are asked to implement all the member and non-member functions.
2. Write a main() function to test all the above functions. The output should be similar to the following sample display:

[image:]

P6.2	(Optional) The interface for the String class (notice that the first letter of String in capitalized to distinguish it from the “string” class defined by C++ in <string> header file) is provide below.

class String
{
	friend ostream &operator<<(ostream &, const String &obj);
	// Postcondition: output/display sobj

	friend istream &operator>>(istream &, String &sobj);
	// Client of this function prompts the user to enter a string
	// Postcondition: input values from the user to initialize sobj
public:
	String(const char* = "");
	// Default constructor

	String(const String &sobj);
	// copy constructor
	// Postcondition: newly created object is initialized with values from sobj

	~String();
	// destructor

	const String &operator=(const String &sobj);
	// Postcondition: calling object gets the values of sobj

	const String &operator+=(const String &sobj);
	// Postcondition: sum/concatenation of the calling object and sobj is returned
	
		bool operator==(const String &sobj) const;
	// Postcondition: return true if calling object == sobj; return false otherwise

	bool operator<(const String &) const;
	// Postcondition: return true if calling object < sobj; return false otherwise
	
	
bool operator>(const String &) const;
	// Postcondition: return true if calling object > sobj; return false otherwise
	
	char operator[](int) const;
	// Postcondition: return true if calling object < sobj; return false otherwise
	
		
	int getLength() const;
	// Postcondition: return true if calling object < sobj; return false otherwise

private:
	int length;
	char *sPtr;	// points to a dynamic C-string, which is a null-terminated char array
};

	You are asked to
1. Implement all member and friend functions
2. Write a main() function to test all those functions. You are asked to format the outputs to make it easy to read.

· Note: To carry out this assignment, you may need to use some of the C-string manipulation functions such as strcpy, strcat, strcmp, etc. You may want to visit http://www.cplusplus.com/reference/cstring/ for more detailed information.
image3.png
(a +bt)(c+ di) = (ac — bd) + (bc + ad)z.

image4.png
atbi_ factbd) (be—ad),
c+di \E+d 24+)

image5.png
@8 C:\Windows\system32\cmd.ex

2) is NOT equal to (2, -5)

2) + (2, -5) = (3,
2) - (2, -5)
1, 2) % (2, -5) = (12, -1)
1, 2) / (2, -5) = (-0.275862, ©.310345)

continue . . . [I

image1.png
(a+bt) + (c+di) = (a+c) + (b+ d).

image2.png
(a+bt) — (c+di) = (a—c)+ (b— d)z.

